FÍSICA Y QUÍMICA 3º ESO

TEMA 6. NOMENCLATURA INORGÁNICA

Compuestos binarios, peróxidos e hidróxidos.

➤ El **número de oxidación** de un elemento es el número de electrones que un átomo gana o cede al formar un compuesto. <u>El número de oxidación de un elemento es **positivo**, cuando el átomo pierde electrones, o **negativo** cuando los gana.</u>

Algunas consideraciones:

- Los **metales** (parte izquierda y central de la tabla periódica) tienen **números de oxidación positivos**.
- Los **no metales** (parte derecha de la tabla periódica) pueden tener **números de oxidación positivos** y **número de oxidación negativos**.
- El número de oxidación de un elemento depende de su posición en la tabla periódica. Por ejemplo, todos los elementos del grupo 1, tienen número de oxidación +1 y los elementos del grupo 17 tienen números de oxidación +1, +3, +5, +7 y -1.

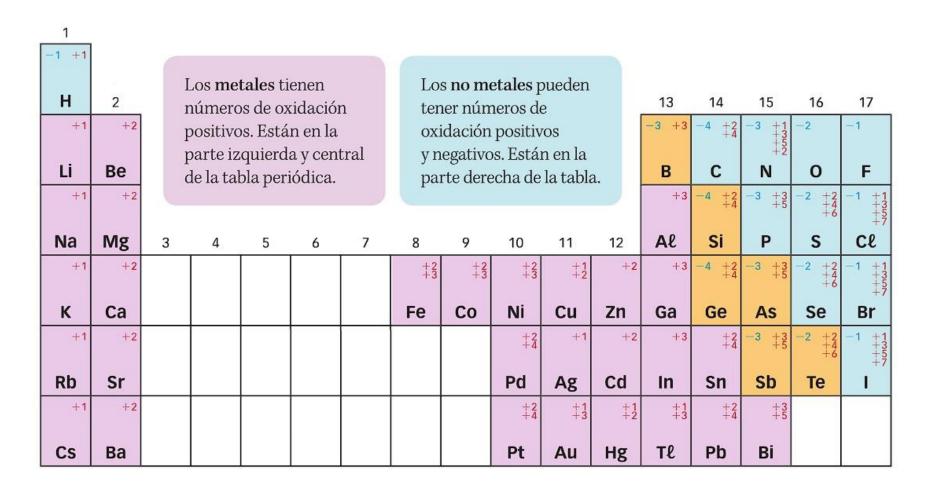


Figura 1. Tabla periódica de los elementos con los números de oxidación más comunes de algunos elementos.

Tabla 1. Números de oxidación de los elementos metálicos (I).

GRU	PO 1	GRUPO 2		GRUPO 13		
Nº ox	id. +1	$N^{\underline{o}}$ oxid. +2 $N^{\underline{o}}$		N° oxid. +2 N° oxid.		id. +3
Litio	Li	Berilio	Ве	Aluminio	Al	
Sodio	Na	Magnesio	Mg	Galio	Ga	
Potasio	K	Calcio	Ca	Indio	In	
Rubidio	Rb	Estroncio	Sr	Nº oxid	1 +1 +3	
Cesio	Cs	Bario	Ва	Nº oxid. +1, +3		
Francio	Fr	Radio	Ra	Talio	Tl	

GRU	PO 14	GRU	PO 15
Nº oxic	l. +2, +4	Nº oxic	l. +3, +5
Estaño Plomo	Sn Pb	Bismuto	Bi

Tabla 2. Números de oxidación de los <u>elementos metálicos</u> (II).

GRUPOS DEL 3 AL 12					
Nº ox	id. +1	Nº oxid. +2		Nº oxid. +1, +2	
Plata	Ag	Zinc Cadmio	Zn Cd	Cobre Mercurio	Cu Hg
Nº oxid. +2, +3		Nº oxid. +2 , +4		Nº oxid. +1, +3	
Hierro Cobalto Níquel	Fe Co Ni	Paladio Platino	Pd Pt	Oro	Au

Tabla 3. Números de oxidación de los elementos no metálicos y semimetales.

GRUPOS 1		GRUP	OS 13	GRUPO 14	
Nº oxid. +1, −1		Nº oxid. +3, −3		N° oxid. +2, +4, -4	
Hidrógeno	Н	Boro	В	Carbono Silicio Germanio	C Si Ge

GRU	PO 15	GRU	PO 16	GRUPO 17	
Nº oxid. +1, +2, +3, +5, −3		Nº oxid. −2		Nº oxid. −1	
Nitrógeno	N	Oxígeno	0	Flúor	F
N° oxid. +3, +5, -3		Nº oxid. +2, +4, +6, −2		Nº oxid. +1, +3, +5, +7, −1	
Fósforo Arsénico	P As	Azufre Selenio	S Se	Cloro Bromo	Cl Br
Antimonio	Sb	Teluro	Те	Iodo	I

I. NOMENCLATURA Y FORMULACIÓN DE SUSTANCIAS SIMPLES

Las **sustancias simples** son aquellas formadas por átomos de **un mismo elemento químico** (átomos iguales).

> ELEMENTOS.

- Los elementos que forman <u>redes cristalinas</u> se formulan con el **símbolo del elemento** y se nombran con el **nombre del elemento**: Fe, hierro; C, carbono; Al, aluminio; Cu, cobre.
- Los elementos que forman <u>moléculas</u> se formulan indicando con un **subíndice** el **número de átomos** que forman la molécula: H_2 , N_2 , O_2 , O_3 , P_4 , S_8 y se nombran con **prefijos multiplicadores**, aunque es frecuente que aparezcan sin ellos (nombre tradicional):

1	2	3	4	5	6	7	8	9	10
mono-	di-	tri-	tetra-	penta-	hexa-	hepta-	octa-	nona-	deca-

> Ejemplos:

Fórmula	Nombre de composición	Nombre tradicional
N_2	Dinitrógeno	Nitrógeno
O_2	Dioxígeno	Oxígeno
H_2	Dihidrógeno	Hidrógeno
O_3	Trioxígeno	Ozono
F_2	Diflúor	Flúor
Cl_2	Dicloro	Cloro
Br_2	Dibromo	Bromo
I_2	Diyodo	Yodo
P_4	Tetrafósforo	Fósforo blanco
S_8	Octaazufre	Azufre

- ➤ **CATIONES.** Son átomos de **elementos metálicos** que han perdido uno o más electrones, y el **hidrógeno**.
 - Se formulan con el **símbolo del elemento** y la **carga positiva**, que coincide con el número de oxidación positivo con el que actúa el elemento, como **superíndice**.

Ejemplos:

Número de oxidación	Fórmula
Bario con +2	Ba ²⁺
Níquel con +3	Ni ³⁺
Sodio con +1	Na ⁺
Plata con +1	Ag^+

- ➤ **CATIONES.** Son átomos de **elementos metálicos** que han perdido uno o más electrones, y el **hidrógeno**.
 - Se nombran con la palabra "catión" seguida del nombre del elemento con el número de oxidación en números romanos o con el número de carga seguida de su signo, entre paréntesis y sin dejar espacio.

Fórmula	Nombre
Fe ²⁺	Catión hierro(II) o hierro(2+)
Fe ³⁺	Catión hierro(III) o hierro(3+)
Cu ⁺	Catión cobre(I) o cobre(1+)
Cu ²⁺	Catión cobre(II) o cobre(2+)

- ➤ **CATIONES.** Son átomos de **elementos metálicos** que han perdido uno o más electrones, y el **hidrógeno**.
 - Cuando el elemento tiene **una única carga** (un único estado de oxidación), no hace falta indicarla. Se nombran con la palabra "catión" seguida del **nombre del elemento**.
 - Ejemplos:

Fórmula	Nombre
Na ⁺	Catión sodio
Mg^{2+}	Catión magnesio
A1 ³⁺	Catión aluminio
Ag^+	Catión plata
H ⁺	Catión hidrógeno

- ➤ ANIONES. Son átomos de elementos no metálicos que han ganado uno o más electrones.
 - Se formulan con el **símbolo del elemento** y la **carga negativa**, que coincide con el estado de oxidación negativo del elemento, como **superíndice**.

Ejemplos:

Número de oxidación	Fórmula
Cloro con –1	Cl-
Azufre con –2	S ² -
Fósforo con –3	P ³ -
Carbono con –4	C ⁴⁻

- ➤ ANIONES. Son átomos de elementos no metálicos que han ganado uno o más electrones.
 - Se nombran con la palabra "ión" seguida del **nombre del elemento** y la terminación "**uro**".

Fórmula	Nombre	
H-	Ion hidruro	
S ²⁻	Ion sulfuro	
P ³ -	Ion fosfuro	
C ⁴⁻	Ion carburo	
Cl-	Ion cloruro	
Se ²⁻	Ion selenuro	
Te ²⁻	Ion telururo	

* El <u>oxígeno</u> tiene dos aniones distintos: el **ion óxido**, O^{2-} , y el **ion peróxido**, O_2^{2-} .

Importante: ion hidróxido, OH-.

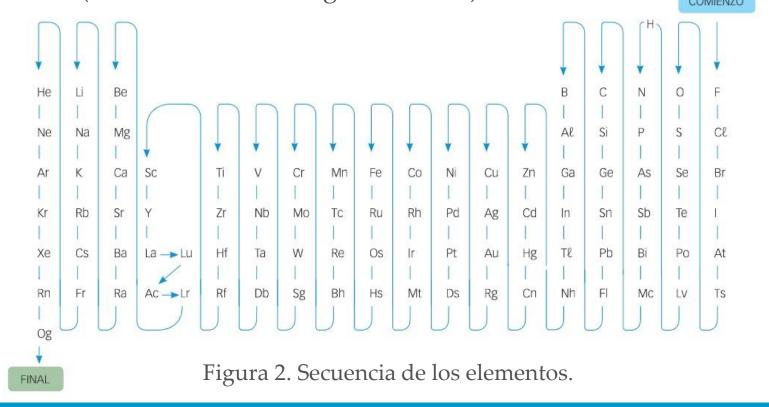
Fórmula	Nombre
* O ²⁻	* Ion óxido
* O ₂ ²⁻	* Ion peróxido
OH-	Ion hidróxido

II. NOMENCLATURA DE LOS COMPUESTOS BINARIOS

II. COMPUESTOS BINARIOS.

Los **compuestos binarios** son aquellos en los que se combinan átomos de **dos elementos químicos**, uno con **número de oxidación positivo** (elemento electropositivo) y otro con **número de oxidación negativo** (elemento electronegativo). Ejemplos: H₂O, NaCl, NH₃.

a) FORMULACIÓN DE COMPUESTOS BINARIOS.

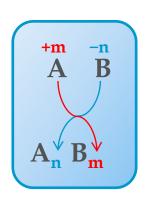

- \gt Se representan los elementos que forman el compuesto mediante sus **símbolos**, y el número de átomos de cada uno mediante un **subíndice**. La fórmula general es A_nB_m .
 - Para formular un compuesto binario debemos saber:

¿Qué elemento va en primer lugar en la fórmula?

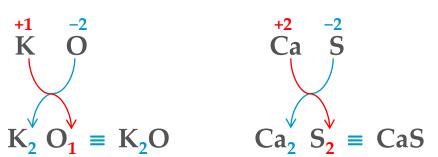
¿Qué subíndice le corresponde a cada elemento?

¿Qué elemento va en primer lugar en la fórmula?

El orden de los elementos en la fórmula se establece de acuerdo con la siguiente **secuencia de elementos**, en la que la flecha hace un recorrido desde el elemento menos metálico hacia el elemento más metálico (terminando con los gases nobles):

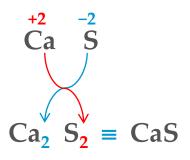

¿Qué elemento va en primer lugar en la fórmula?

En las **fórmulas químicas** de los **compuestos binarios**, el elemento que se encuentre más cerca del **comienzo** se escribirá **a la derecha** de la fórmula del compuesto y será el que actúe con **número de oxidación negativo**. Ejemplos:

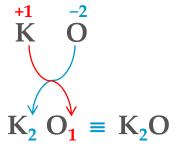

Elementos que se combinan	Primer elemento en la secuencia	Fórmula
Cloro y sodio	Cloro, Cl	NaCl
Bario y oxígeno	Oxígeno, O	BaO
Cobre y oxígeno	Oxígeno, O	Cu ₂ O
Bromo e hidrógeno	Bromo, Br	HBr
Hidrógeno y magnesio	Hidrógeno, H	MgH_2

¿Qué subíndice le corresponde a cada elemento?

Hay que añadir tantos **átomos** de un elemento como indique el **número de oxidación** del otro.

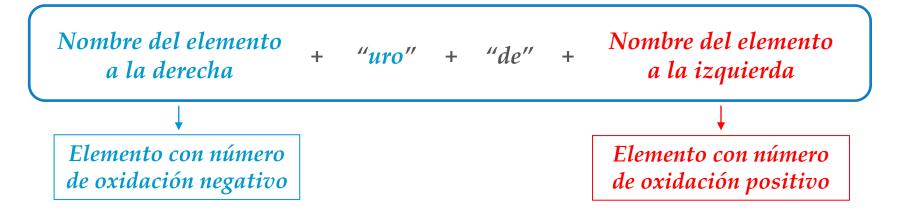


- Ejemplos:


Los subíndices **se simplificarán** cuando el número de átomos de los dos elementos sea divisible entre un mismo número (salvo en los peróxidos) y **se omitirán** cuando su valor sea 1.

Los **compuestos binarios** son compuestos **neutros** por lo que la suma de los **números de oxidación** de todos los átomos de la fórmula debe ser cero.

Elemento	Nº de átomos	Nº de oxidación
Calcio	1	+2
Azufre	1	-2


$$1 \times (+2) + 1 \times (-2) = 2 - 2 = 0$$

Elemento	Nº de átomos	Nº de oxidación
Potasio	2	+1
Oxígeno	1	-2

$$2 \times (+1) + 1 \times (-2) = 2 - 2 = 0$$

El nombre del **compuesto binario** se establece según la siguiente norma:

* **EXCEPCIÓN**: Si el elemento situado a la derecha de la fórmula es el <u>oxígeno</u>, el compuesto se nombra como *"óxido"*:

NOMENCLATURA DE COMPOSICIÓN: el nombre de la sustancia química informa sobre los distintos tipos de elementos que la componen y su proporción (número de átomos de cada elemento).

Existen diferentes **tipos de nomenclatura de composición** según cómo se indique la proporción de cada elemento en la fórmula química:

- 1) Nomenclatura de composición con prefijos multiplicadores.
- 2) Nomenclatura de composición con números de oxidación.

1) Nomenclatura de composición con prefijos multiplicadores.

Delante del nombre de cada elemento se añade un <u>prefijo</u> <u>multiplicador</u> con el que se indica el <u>número de átomos</u> de ese elemento en la fórmula: *mono*, para uno (se puede omitir cuando no ofrece duda), *di*, para dos; *tri*, para tres; *tetra*, para cuatro; *penta*, para cinco; *hexa*, para seis

Fórmula	Nombre	Fórmula	Nombre
Co_2S_3	Trisulfuro de dicobalto	CaCl	Cloruro de calcio
Ba_3N_2	Dinitruro de tribario	CuCl	Monocloruro de cobre
PbH_4	Tetrahidruro de plomo	CuCl ₂	Dicloruro de cobre
K ₂ O	Óxido de dipotasio	LiH	Hidruro de litio
Al_2O_3	Trióxido de dialuminio	NiO	Monóxido de níquel

2) Nomenclatura de composición con números de oxidación.

Se escribe el <u>número de oxidación</u> del **elemento electropositivo**, entre paréntesis y en números romanos después del nombre, sin dejar espacio. Si el **elemento electropositivo** tiene un <u>único número de oxidación</u> no se añade. Por ejemplo, sería incorrecto nombrar el compuesto AlBr₃ como bromuro de aluminio(III), ya que el aluminio solo tiene un número de oxidación, +3.

Fórmula	Nombre	Fórmula	Nombre
Co_2S_3	Sulfuro de cobalto(III)	CaCl	Cloruro de calcio
Ba_3N_2	Nitruro de bario	CuCl	Cloruro de cobre(I)
PbH ₄	Hidruro de plomo(IV)	CuCl ₂	Cloruro de cobre(II)
K ₂ O	Óxido de potasio	LiH	Hidruro de litio
Al_2O_3	Óxido de aluminio	NiO	Óxido de níquel(II)

- Ejemplos:

Fórmula	Prefijos	Estado de oxidación
MgCl ₂	Dicloruro de magnesio	Cloruro de magnesio
CO ₂	Dióxido de carbono	Óxido de carbono(IV)
AIH ₃	Trihidruro de aluminio	Hidruro de aluminio
IF ₇	Heptafluoruro de yodo	Fluoruro de yodo(VII)
Ag ₂ O	Óxido de diplata	Óxido de plata
H ₂ S	Sulfuro de dihidrógeno	Sulfuro de hidrógeno
CuCl ₂	Dicloruro de cobre	Cloruro de cobre(II)
Na ₂ S	Sulfuro de disodio	Sulfuro de sodio
P_2O_3	Trióxido de difósforo	Óxido de fósforo(III)
RbH	Hidruro de rubidio	Hidruro de rubidio

Formulación de un compuesto binario a partir de su nombre:

1) Nombre con prefijos multiplicadores.

2) Nombre con estados de oxidación.

Siliciuro de níquel(II)

Ni Si

Ni Si

Ni
$$_{4}$$
 Si $_{2}$ = Ni $_{2}$ S

* COMBINACIONES BINARIAS DEL HIDRÓGENO.

1) HIDRUROS NO METÁLICOS.

Son combinaciones del **hidrógeno** con elementos de los **grupos 13 a 17**. Para nombrarlos, además de la nomenclatura de composición, se acepta la <u>nomenclatura de sustitución</u> (hidruros progenitores): **nombre del elemento** con la terminación "**ano**". Los más utilizados:

				Fórmula	Nombre
	Fórmula	Nombre		NH_3	Azano o amoniaco
GRUPO 13	BH_3	Borano	GRUPO 15	PH_3	Fosfano
GRUPO 14	CH_4	Metano		AsH_3	Arsano
GROI O 14	SiH_4	Silano		SbH ₃	Estibano
GRUPO 16	H_2O	Oxidano o agua		BiH_3	Bismutano

2) COMPUESTOS HIDRÁCIDOS.

Son combinaciones del **hidrógeno** con elementos de los **grupos 16 y 17** en disolución acuosa. Estas especies tienen carácter ácido y se nombran como hidrácidos:

Fórmula	Nombre en disolución (aq)	Nombre con número de oxidación
H ₂ S	Ácido sulfhídrico	Sulfuro de hidrógeno
H ₂ Se	Ácido selenhídrico	Selenuro de hidrógeno
H ₂ Te	Ácido telurhídrico	Telururo de hidrógeno
HF	Ácido fluorhídrico	Fluoruro de hidrógeno
HCI	Ácido clorhídrico	Cloruro de hidrógeno
HBr	Ácido bromhídrico	Bromuro de hidrógeno
HI	Ácido yodhídrico	Yoduro de hidrógeno

Ejercicio 1. Formula los siguientes compuestos binarios.

NOMBRE	FÓRMULA
Trióxido de dicobalto	
Yoduro de hidrógeno	
Sulfuro de fósforo(III)	
Fosfuro de calcio	
Dihidruro de mercurio	
Dicloruro de pentaoxígeno	
Hidruro de cobre(I)	
Ácido sulfhídrico	
Monóxido de plomo	

NOMBRE	FÓRMULA
Tetracloruro de carbono	
Óxido de níquel(III)	
Ácido clorhídrico	
Dicloruro de oxígeno	
Selenuro de hidrógeno	
Fluoruro de cobre(II)	
Óxido de litio	
Hidruro de hierro(III)	
Óxido de nitrógeno(I)	

Ejercicio 1. Formula los siguientes compuestos binarios.

NOMBRE	FÓRMULA
Trióxido de dicobalto	Co ₂ O ₃
Yoduro de hidrógeno	НІ
Sulfuro de fósforo(III)	P ₂ S ₃
Fosfuro de calcio	Ca ₃ P ₂
Dihidruro de mercurio	HgH ₂
Dicloruro de pentaoxígeno	O ₅ Cl ₂
Hidruro de cobre(I)	CuH ₂
Ácido sulfhídrico	H ₂ S _(aq)
Monóxido de plomo	PbO

NOMBRE	FÓRMULA
Tetracloruro de carbono	CCI ₄
Óxido de níquel(III)	Ni ₂ O ₃
Ácido clorhídrico	HCI _(aq)
Dicloruro de oxígeno	OCI ₂
Selenuro de hidrógeno	H₂Se
Fluoruro de cobre(II)	CuF ₂
Óxido de litio	Li ₂ O
Hidruro de hierro(III)	FeH ₃
Óxido de nitrógeno(I)	N ₂ O

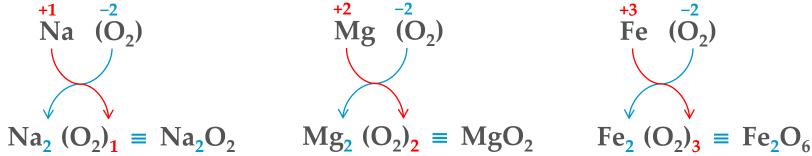
Ejercicio 2. Nombra los siguientes compuestos binarios:

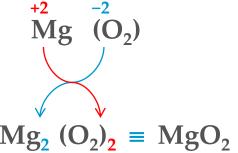
Fórmula	Prefijos	Número de oxidación
FeCl ₃		
PtH_4		
BeF ₂		
CO ₂		
СО		
PH_5		
NiO		
CuS		
NH_3		
H ₂ Se		
Na ₃ N		

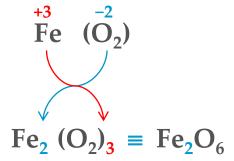
Ejercicio 2. Nombra los siguientes compuestos binarios:

Fórmula	Prefijos	Número de oxidación
FeCl ₃	Tricloruro de hierro	Cloruro de hierro(III)
PtH_4	Tetrahidruro de platino	Hidruro de platino(IV)
BeF ₂	Difluoruro de berilio	Fluoruro de berilio
CO_2	Dióxido de carbono	Óxido de carbono(IV)
CO	Monóxido de carbono	Óxido de carbono(II)
PH_5	Pentahidruro de fósforo	Hidruro de fósforo(V)
NiO	Monóxido de níquel	Óxido de níquel(II)
CuS	Monosulfuro de cobre	Sulfuro de cobre(II)
NH_3	Trihidruro de nitrógeno	Hidruro de nitrógeno(III)
H ₂ Se	Selenuro de dihidrógeno	Selenuro de hidrógeno
Na ₃ N	Nitruro de trisodio	Nitruro de sodio

* COMBINACIONES BINARIAS DEL OXÍGENO. PERÓXIDOS


En la mayoría de las combinaciones binarias en las que participa el oxígeno, lo hace con su **número de oxidación** habitual, **-2**. Esta especie es el **ion óxido**, **O**²⁻, y ya hemos visto que sus combinaciones se nombran como **óxidos**.


Sin embargo, esta no es la única opción, pues el oxígeno puede formar otro anión distinto, el **ion peróxido**, $(O_2)^{2-}$, una especie diatómica con carga 2–, en la que se considera que cada oxígeno actúa con **número de oxidación** –1.


Los <u>peróxidos</u> son las combinaciones del **anión peróxido**, O_2^{2-} , con **metales** o con el **hidrógeno**. Por ejemplo, el peróxido de hidrógeno o agua oxigenada es H_2O_2 .

a) FORMULACIÓN DE LOS PERÓXIDOS.

- \triangleright La fórmula general de los peróxidos es $A_2(O_2)_n$, donde A es un elemento metálico o el hidrógeno (estado de oxidación positivo). Los subíndices solo se simplifican si al hacerlo, el número de átomos de oxígeno que quedan es par.
 - Ejemplos: Na₂O₂, MgO₂, Fe₂O₆.

b) NOMENCLATURA DE LOS PERÓXIDOS.

Los peróxidos se pueden nombrar de dos formas:

1) Nomenclatura de composición con prefijos multiplicadores.

Se nombran como <u>óxidos</u> utilizando **prefijos multiplicadores** para indicar el **número de átomos** de cada elemento en la fórmula.

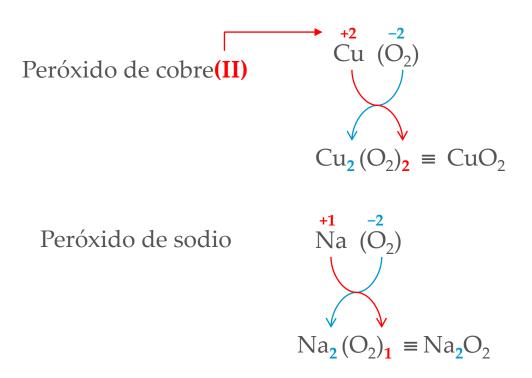
- Ejemplos:

Fórmula	Nombre	Fórmula	Nombre
H_2O_2	Dióxido de dihidrógeno	NiO ₂	Dióxido de níquel
Na ₂ O ₂	Dióxido de disodio	CuO ₂	Dióxido de cobre
MgO_2	Dióxido de magnesio	Cu ₂ O ₂	Dióxido de dicobre
BaO ₂	Dióxido de bario	PtO ₄	Tetraóxido de platino

b) NOMENCLATURA DE LOS PERÓXIDOS.

2) Nomenclatura de composición con números de oxidación.

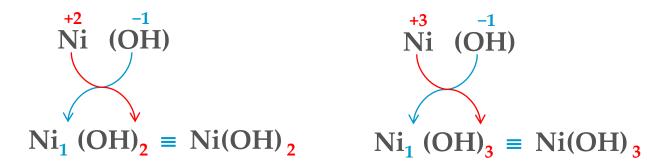
Se nombran como <u>peróxidos</u> y se indica el **número de oxidación** del **elemento electropositivo**, entre paréntesis y en números romanos, sin dejar espacio. Si el **elemento electropositivo** tiene un <u>único número de oxidación</u> no se añade.


- Ejemplos:

Fórmula	Nombre	Fórmula	Nombre
H_2O_2	Peróxido de hidrógeno	NiO ₂	Peróxido de níquel(II)
Na ₂ O ₂	Peróxido de sodio	CuO ₂	Peróxido de cobre(II)
MgO_2	Peróxido de magnesio	Cu_2O_2	Peróxido de cobre(I)
BaO ₂	Peróxido de bario	PtO ₄	Peróxido de platino(IV)

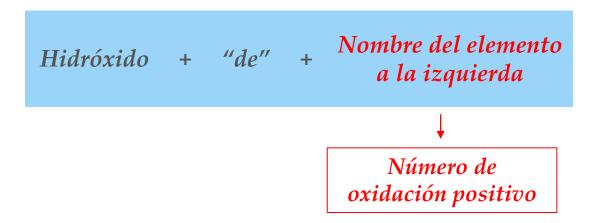
- Formulación de un <u>peróxido</u> a partir de su nombre:
 - 1) Nombre con prefijos multiplicadores.

2) Nombre con estados de oxidación.


III. NOMENCLATURA DE HIDRÓXIDOS

III. HIDRÓXIDOS.

Son combinaciones de elementos metálicos (**estados de oxidación positivo**) con el **ion hidróxido, (OH)**⁻, que actúa con número de oxidación **-1**.


a) FORMULACIÓN DE LOS HIDRÓXIDOS.

La fórmula general de los hidróxidos es $A(OH)_{n'}$, donde A es un elemento metálico (estado de oxidación positivo). Cuando el subíndice es 1, se puede omitir y los paréntesis quitar. Ejemplos: NaOH, Mg(OH)₂, Fe(OH)₃.

b) NOMENCLATURA DE LOS HIDRÓXIDOS.

El nombre de los hidróxidos se establece según la siguiente norma:

Siguiendo esta norma, y al igual que para las combinaciones binarias, se pueden utilizar dos tipos de nomenclatura:

- 1) Nomenclatura de composición con prefijos multiplicadores.
- 2) Nomenclatura de composición con números de oxidación.

- Ejemplos nomenclatura de hidróxidos:

Fórmula	Prefijos	Número de oxidación
$Al(OH)_3$	Trihidróxido de aluminio	Hidróxido de aluminio
Fe(OH) ₂	Dihidróxido de hierro	Hidróxido de hierro(II)
Fe(OH) ₃	Trihidróxido de hierro	Hidróxido de hierro(III)
Ca(OH) ₂	Dihidróxido de calcio	Hidróxido de calcio
CuOH	Monohidróxido de cobre	Hidróxido de cobre(I)
Cu(OH) ₂	Dihidróxido de cobre	Hidróxido de cobre(II)
LiOH	Hidróxido de litio	Hidróxido de litio
$Pt(OH)_2$	Dihidróxido de platino	Hidróxido de platino(II)
AgOH	Hidróxido de plata	Hidróxido de plata
$Co(OH)_2$	Dihidróxido de cobalto	Hidróxido de cobalto(II)
$Pb(OH)_4$	Tetrahidróxido de plomo	Hidróxido de plomo(IV)

FÍSICA Y QUÍMICA 3º ESO

TEMA 6. NOMENCLATURA INORGÁNICA

Compuestos binarios, peróxidos e hidróxidos.